Unintentional injury in England: an analysis of the emergency care data set pilot in Oxfordshire from 2012 to 2014

Graham Kirkwood,1 Thomas C Hughes,2 Allyson M Pollock1

ABSTRACT

Background A pilot injury data collection exercise at the emergency departments (EDs) of Oxford University Hospitals National Health Service (NHS) Foundation Trust (OUH) ran from 2012 to 2014 to inform the current development of the new NHS England emergency care data set.

Methods Data collected at the EDs of OUH 1 January 2012 to 30 March 2014 analysed for Oxford City and Cherwell District Council areas. The most frequent location, mechanism, activity and diagnosis were home (39.1% of all unintentional injuries (UIs)), low-level falls (47.1%), leisure (31.1%) and ‘injuries to unspecified part of trunk, limb or body region’ (20.5%), respectively. The most deprived quintile of the population (Index of Multiple Deprivation (IMD) 1) had the highest European Age Standardised Rate (EASR) for all UIs and IMD 5 had the lowest, 54.4 (95% CI 52.3 to 56.5) and 32.2 (31.4 to 33.0) per 1000 person-years, respectively. There was a significant association between increasing levels of deprivation and an increasing incidence rate ratio (IRR) for all UIs, for those in the home, for low-level fall UIs and for non-sport leisure UIs with a particularly sharp increase in the IRR for IMD 1 compared with IMD 5. Sport-related injuries were inversely related to deprivation apart from football.

Results Of the 63 877 injury attendances recorded at the 2 sites, 26 536 were unintentional with a home postcode within Oxford City or Cherwell District Council areas. The most frequent location, mechanism, activity and diagnosis were home (39.1% of all unintentional injuries (UIs)), low-level falls (47.1%), leisure (31.1%) and ‘injuries to unspecified part of trunk, limb or body region’ (20.5%), respectively. The most deprived quintile of the population (Index of Multiple Deprivation (IMD) 1) had the highest European Age Standardised Rate (EASR) for all UIs and IMD 5 had the lowest, 54.4 (95% CI 52.3 to 56.5) and 32.2 (31.4 to 33.0) per 1000 person-years, respectively. There was a significant association between increasing levels of deprivation and an increasing incidence rate ratio (IRR) for all UIs, for those in the home, for low-level fall UIs and for non-sport leisure UIs with a particularly sharp increase in the IRR for IMD 1 compared with IMD 5. Sport-related injuries were inversely related to deprivation apart from football.

Conclusions This pilot has demonstrated both the feasibility and importance of prioritising the collection of a national injury data set.

INTRODUCTION

Unintentional injuries (UIs) are a major cause of morbidity and mortality worldwide. According to the WHO, they were responsible for 6.0% of all years of life lost due to disability and 3.7 million deaths (6.7% of all deaths) in the world population in 2012.1 In the USA, the lifetime cost of all injuries, intentional and unintentional, was estimated in 2012.1 In the USA, the lifetime cost of all injuries, intentional and unintentional, was estimated in 2012.1 In 2012, the Department of Health funded pilot injury data collection exercises in the emergency departments (EDs) of the Oxford University Hospitals National Health Service (NHS) Foundation Trust (OUH) and St Mary’s Hospital in London with a view to implementing a national data set.

The incidence of and death from UI are associated with higher levels of area-level socioeconomic deprivation in the UK.9–12 In Scotland, for example, adults in the most deprived fifth of the population are 1.9 times more likely to be admitted to hospital as an emergency and 2.4 times more likely to die from a UI than those in the least deprived fifth.12

This study uses data from the OUH pilot to examine the relationship between area-level socioeconomic deprivation and UI ED attendance for all ages in relation to the home location; to falls and road traffic collisions (RTC); and to leisure and sport activities; in England using Oxfordshire as a case study.

METHODS

Data sources

Injury data

Injury data were collected from 1 January 2012 to 30 March 2014 from patients attending the ED receptions of the John Radcliffe Hospital in Oxford and the Horton General Hospital in Banbury by clerical staff. The injury data set complied with the requirements of the European Injury Data Base—Joint Action on Monitoring Injuries in Europe (IDB-JAMIE), the WHO guidelines on minimum injury data sets and international best practice.20 21 It was incorporated into the electronic patient administration system on a specially designed form with field descriptions taken from the Royal College of Emergency Medicine (RCEM) minimum data set ‘patient injury’ section.22

To cite: Kirkwood G, Hughes TC, Pollock AM. J Epidemiol Community Health. 2016;0:1–7. doi:10.1136/jech-2016-207581

Copyright Article author (or their employer) 2016. Produced by BMJ Publishing Group Ltd under licence.
Geographical location of home residence was recorded in the data set using lower super output area (LSOA) under the 2001 coding system (LSOA2001) derived at the hospitals from patients’ home postcodes. The primary diagnosis for each patient record was added to the data set immediately prior to discharge by the clinician in the form of SNOMED Description ID codes from an unconstrained list in excess of 50 000 terms.23 Population and deprivation data

The Office for National Statistics (ONS) mid-year population data for 2013 by age, sex and LSOA for 2011 (LSOA2011) were used to calculate exposure as person-years by multiplying the 2013 year totals by 2.25 to account for the full 2 years 3 months of the pilot.24 LSOA2011 areas have a minimum population of 1000 and an average of 1600.25 Deprivation data by LSOA2011 were taken from the Index of Multiple Deprivation (IMD) Scores for 2015 for England, downloaded from the Department for Communities and Local Government, UK Government website and LSOAs were allocated into equal quintiles nationally by population, with IMD 1 the most deprived quintile.26 Injury data were collected using LSOA2001, whereas population and deprivation data were available by LSOA2011. Details of how these were matched are available in online supplementary materials.

Analysis

The commissioning of emergency care for the population of Oxfordshire is the responsibility of NHS Oxfordshire Clinical Commissioning Group (CCG). Analysis was based on patients resident within the two district council areas containing the two hospitals which collected data, Oxford City for the John Radcliffe Hospital and Cherwell for the Horton General Hospital. Oxford City has no external boundaries with any other county and the external boundaries of Cherwell are coterminous with those of Oxfordshire CCG area.

The total number of UIs and crude incidence for each district council area within Oxfordshire CCG were calculated. Number of UIs and crude incidence by gender, 5-year age group and IMD2015 Quintile were also calculated. Numbers of UIs were analysed by location (injury place type), mechanism, activity and diagnosis. European Age Standardised Rates (EASRs) to the European Standard Population 2013 were calculated for all UIs. Poisson regression using Stata V.12.1 was used to produce incidence rate ratios (IRRs) by IMD quintile (reference category IMD 5) for all UIs and for those UIs with: location home; mechanism low-level fall (under 1 m) and RTC; and activities sport (non-football), football and non-sport leisure. The diagnoses in the form of SNOMED Description ID codes were grouped into SNOMED Concept IDs using files available from the Health and Social Care Information Centre (HSCIC) TRUD service. SNOMED CT is structured on a relational database model with tables of concepts and descriptions such that one single concept (relating to, eg, a diagnosis) can have any number of descriptions, one of which is the gold standard ‘fully specified name’ for that concept.23 28 These concepts were then further converted into the International Classification of Diseases (ICD)-10 Chapter Blocks using a further set of HSCIC TRUD files.

Data completeness and quality

An extract of totals was obtained from OUH of Hospital Episode Statistics (HES) ED data returns from 1 January 2012 to 30 March 2014 by year and month of attendance and by gender and age in 5-year age groups and by the HES field patient group. The completeness and quality of the data set were checked against HES for all injuries and for all UIs and also for RTCs and sport injuries. Comparisons were made using the complete data set, not just those attendances for patients within Oxfordshire CCG area as home location was not available in the HES data.

RESULTS

There were 63 877 ED injury attendances recorded, 41 216 were UIs for patients resident within Oxfordshire CCG area of which 26 536 (41.4%) had a home LSOA coded within Oxford City or Cherwell District Council areas (see online supplementary table A). The crude UI rate varied across Oxfordshire District Council areas, Oxford City and Cherwell District had the highest rates at 49.9 (95% CI 49.2 to 50.7) and 28.3 (27.7 to 28.9) per 1000 person-years, respectively, significantly higher than the other three Oxfordshire District Council areas.

The crude UI incidence for Oxford and Cherwell combined was 39.5 (39.0 to 40.0) per 1000 person-years (table 1). Males

Table 1	Number of UIs, person-years exposed and crude UI incidence per 1000 person-years with 95% CIs by gender, 5-year age group and IMD2015 Quintile. Oxford City and Cherwell District Council areas, Oxfordshire		
Gender	Ul's Person-years	Ul incidence per 1000 person-years	
Male	14 555	334 631	43.5 (42.8 to 44.2)
Female	11 981	336 841	35.6 (34.9 to 36.2)
Age group			
0–4	2234	43 259	51.6 (49.5 to 53.8)
5–9	1982	38 959	50.9 (48.7 to 53.2)
10–14	2746	34 637	79.3 (76.3 to 82.3)
15–19	2622	44 964	58.3 (56.1 to 60.6)
20–24	3230	69 266	46.6 (45.0 to 48.3)
25–29	2316	56 750	40.8 (39.2 to 42.5)
30–34	1830	54 027	33.9 (32.3 to 35.5)
35–39	1294	43 769	29.6 (28.0 to 31.2)
40–44	1393	44 188	31.5 (29.9 to 33.2)
45–49	1235	44 921	27.5 (26.0 to 29.1)
50–54	1059	39 650	26.7 (25.1 to 28.4)
55–59	813	33 255	24.4 (22.8 to 26.2)
60–64	753	30 976	24.3 (22.6 to 26.1)
65–69	582	28 141	20.7 (19.0 to 22.4)
70–74	492	21 013	23.4 (21.4 to 25.6)
75–79	505	17 305	29.2 (26.7 to 31.8)
80–84	529	13 196	40.1 (36.7 to 43.7)
85+	921	13 199	69.8 (65.3 to 74.4)
IMD2015 Quintile			
1=most deprived			
1	2967	50 191	59.1 (57.0 to 61.3)
2	4099	94 066	43.6 (42.3 to 44.9)
3	6151	146 417	42.0 (41.0 to 43.1)
4	6987	191 432	36.5 (35.6 to 37.4)
5	6332	189 367	33.4 (32.6 to 34.3)
Total	26 536	671 472	39.5 (39.0 to 40.0)

Data source: Oxford University Hospitals NHS Foundation Trust emergency departments 1 January 2012 to 30 March 2014.

IMD, Index of Multiple Deprivation; NHS, National Health Service; UI, unintentional injury.
recorded. Injuries, 77.0% and 216%, respectively, of the HES total were with 49,731 (60.5%) in the OUH data set. For RTCs and sport data set, there were 82,209 reported to HES compared with 63,877 (73.3% of HES total) in the OUH from 1 January 2012 to 30 March 2014 compared with 63,877 (73.3% of HES total) in the OUH.

IMD 1 had the highest EASR for all UIs and IMD 5 the lowest, 54.4 (52.3 to 56.5) and 32.2 (31.4 to 33.0) per 1000 person-years, respectively (see table 2 and figure 1). For all UIs, the IRRs for IMD quintiles 1–4 compared with IMD 5 were all >1 (see table 2 and figure 1). IMD quintile 1, the most deprived quintile, had the highest IRR of 1.70 (1.63 to 1.78). The IRR for IMD 1 was significantly higher than that for all other quintiles. The same pattern existed for UIs in the home, for low-level falls and for non-sport leisure UIs with IRRs for IMD 1 of 1.90 (1.77 to 2.03), 1.57 (1.47 to 1.67) and 1.70 (1.57 to 1.84), respectively. This pattern also existed for work activity UIs with an IRR for IMD 1 of 2.25 (1.88, 2.68) (see online supplementary table D). For RTC UIs, there were no significant differences between the IRRs for IMD quintiles 1–4 but all were significantly >1; the IRR for IMD 1 was 1.72 (1.42 to 2.08; see table 2 and figure 3). For non-football sport, the gradient was the opposite to that for all UIs, the IRR for IMD 1 was 0.80 (0.69 to 0.92). For football, the only IRR significantly >1 was IMD 1 with an IRR of 1.61 (1.36 to 1.91).

There were 87,125 injuries (intentional and unintentional) reported to HES from OUH from 1 January 2012 to 30 March 2014 compared with 63,877 (73.3% of HES total) in the OUH data set. For UIs, there were 82,209 reported to HES compared with 49,731 (60.5%) in the OUH data set. For RTCs and sport injuries, 77.0% and 216%, respectively, of the HES total were recorded.

DISCUSSION

People living in the most deprived parts of Oxford City and Cherwell District Council areas of Oxfordshire are 70% more likely to attend an ED with a UI than those living in the least deprived parts. This analysis has found a non-linear relationship between deprivation and ED attendance for UI with a sharp, significant increase in attendance rates in the most deprived quintile of area-level socioeconomic deprivation. This association persists for UIs in the home, for low-level falls and non-sport leisure activity UIs but not for those from sport or RTCs.
The pattern of incidence of UI attendance found in this study is identical to that found in Wales for all injuries, in particular the same highest and lowest rates for 10–14 and 65–69 years old, respectively, are evident in both settings. Other studies have also found similar patterns with respect to inequality, in particular sharp increases in injury rates among the most deprived. An analysis of ONS data on deaths from injury in England from 4-year periods around the 1981, 1991 and 2001 censuses found children of parents who were long-term unemployed or had never worked were 13 times more likely to die from injury and 38 times more likely to die in a fire than children of parents who had managerial or professional jobs. Children aged under 5 years with parents in unskilled occupations have been found to be more than four times as likely to be unintentionally injured in the home than those whose parents had professional or managerial occupations. Although child injury mortality rates fell in England and Wales in the 1980s, these reductions were accompanied by a widening socio-economic mortality differential between rich and poor.

This study found some effect from deprivation on incidence of RTC UIs, but only in that the least deprived quintile of the population had a lower rate than the other four quintiles. Other studies have had different findings; an analysis of HES admissions data for serious injuries in children 0–15 years from 1 April 1999 to 31 March 2004 found pedestrians in the most deprived 10th of the population were four times more likely to have been injured and admitted to hospital than those in the least deprived 10th; for cyclists the ratio was 3:1; and for car...
occupants almost 5:1.15 A separate study of English HES ED attendance data from financial year 2010/2011 found RTCs significantly more prevalent in the most deprived quintiles of the population.16 These differences for Oxfordshire are interesting and may be related to local initiatives around road safety, but this is speculative and will require more detailed investigation. The advantage of conducting a local study such as this is that national studies may obscure local conditions.31

Housing tenure, household overcrowding, maternal unemployment, young maternal age and distance to hospital are all associated with socioeconomic deprivation and UI.9, 11, 17, 31 None of these potential variables were available in the data set analysed here. Two previous studies carried out on 0–4 and 5–14 years old in Norwich, England, found a relationship between increasing numbers of children presenting to the ED with injuries and high area-level socioeconomic deprivation, although this reduced after the protective individual household factors, number of adults in the house and the age gap between the child and the oldest female in the house were added into the model.9, 10

In their English HES ED data study, Hughes \textit{et al}16 also found sport injury ED attendance decreased with increasing deprivation, the same pattern to that found here except for football. Unfortunately individual sports are not collected by the current ED data systems making this finding for football unique at the moment. Rates of sport participation for individual sports vary by socioeconomic status, and this is likely to have been a factor in the patterns found.32 There is also no facility to record a fall (the most common mechanism of injury) as mechanism within the current ED data systems, although inpatient admissions due to falls have been found to be linked to deprivation.15 The new emergency care data set (ECDS) will collect much more detailed activity and mechanism information than that currently collected, including falls and individual sports, creating a far richer data environment for analysis that exists at the moment.33

This study has some limitations. First, there are issues to do with both the numerator and the denominator used in the incidence calculations and regression modelling. Minor injury units run by Oxford Health NHS Foundation Trust do not collect data and this together with the loss of some data due to cross-border flows of patients out of Oxfordshire may have underestimated the number of injuries. To minimise this, only the district council areas with the two EDs located in them were used, Oxford City and Cherwell. In addition, some of the most severely injured patients may not have been included in the data. Also the estimated exposure calculated in person-years for particular locations and activities is necessarily exaggerated as individuals do not spend 24 hours a day at home, on the road, playing sport, etc, which is the implicit assumption in calculating exposure as person-years based on the population at risk and the total elapsed time in the study. This may be more pronounced for some activities of short duration, for example sport. Both these issues will have led to an underestimation of the true rates of injuries. They are also likely to have led to an altering of the effect of socioeconomic deprivation. Second, there are issues with respect to data quality which may be a function of the coding structures in the data set. For activity, \textit{RTC cyclist} was under-recorded in the data set with \textit{other specified sport} were under-recorded in the data set with \textit{other accident and for a further 3.0% the reason was ‘other accident’ and for a further 3.0% the reason was ‘not known’; in other words, 95.6% of patients had very little detail on their reason for attending the ED. In addition, 35.6% of patients were recorded on HES with a blank diagnosis or one that is unmatchable to HES categories. Specific sports were under-recorded in the data set with 26.1% of female and 13.5% of male sport-related UIs coded as ‘other unspecified sport’. Completeness was higher for RTCs where these were coded using the options under injury activity, for example ‘RTC cyclist’.22 Similarly, for sport injuries, the ED data and this together with the loss of some data due to cross-border flows of patients out of Oxfordshire may have underestimated the number of injuries. To minimise this, only the district council areas with the two EDs located in them were used, Oxford City and Cherwell. In addition, some of the most severely injured patients may not have been included in the data. Also the estimated exposure calculated in person-years for particular locations and activities is necessarily exaggerated as individuals do not spend 24 hours a day at home, on the road, playing sport, etc, which is the implicit assumption in calculating exposure as person-years based on the population at risk and the total elapsed time in the study. This may be more pronounced for some activities of short duration, for example sport. Both these issues will have led to an underestimation of the true rates of injuries. They are also likely to have led to an altering of the effect of socioeconomic deprivation. Second, there are issues with respect to data quality which may be a function of the coding structures in the data set. For activity, \textit{RTC cyclist} was under-recorded in the data set with \textit{other unspecified sport} were under-recorded in the data set with \textit{other accident and for a further 3.0% the reason was ‘other accident’ and for a further 3.0% the reason was ‘not known’; in other words, 95.6% of patients had very little detail on their reason for attending the ED. In addition, 35.6% of patients were recorded on HES with a blank diagnosis or one that is unmatchable to HES categories. Specific sports were under-recorded in the data set with 26.1% of female and 13.5% of male sport-related UIs coded as ‘other unspecified sport’. Completeness was higher for RTCs where these were coded using the options under injury activity, for example ‘RTC cyclist’.22 Similarly, for sport injuries, the ED

\textbf{Figure 3} Unintentional injuries in Oxford City and Cherwell District Council areas, Oxfordshire. Incidence rate ratios with 95% CIs by IMD2015 Quintile adjusted by age and sex for sport (non-football), football and road traffic collisions. Data source: Oxford University Hospitals NHS Foundation Trust emergency departments 1 January 2012 to 30 March 2014. IMD, Index of Multiple Deprivation; NHS, National Health Service.
research data recorded more than double that reported to HES. This tends to suggest that the availability of more detailed recording options leads to higher levels of data recording. Finally, the model used was that of Poisson regression with the assumption that each injury event is independent which may not always be the case especially with recurring injuries. An alternative model, the negative binomial, was tried but made very little difference to the results.

This study has provided further evidence that UIs occur mainly in the home, mainly from low-level falls and mainly from leisure activities including sport. It has also added to the evidence that socioeconomic deprivation is associated with UI, particularly in the most deprived geographical areas. It has shown that subject to refinement, the RCEM minimum data set for injuries could be implemented and used to inform the design, implementation and evaluation of injury prevention initiatives. Shortfalls in the ED data collection systems and in HES should be rectified when the ECDS goes live.1,3

There are examples of good practice to follow in the UK. In Wales, the All Wales Injury Surveillance System is used to evaluate injury prevention initiatives on a population scale, the effect of which may be too small to pick up in a small-scale trial or survey.29 In England, the Information Sharing to Tackle Violence initiative allows hospitals to share non-confidential ED data with Community Safety Partnerships in turn allowing police to target and prevent violent injuries in the community.34 The new ECDS combined with in-depth surveys could be used to plan and target prevention initiatives, particularly in disadvantaged communities.

What is already known on this subject

Unintentional injury is a major cause of attendance at National Health Service (NHS) emergency departments (EDs) in the UK. Socioeconomic deprivation is associated with increased incidence of unintentional injury. Detailed injury data are not routinely collected.

What this study adds

- People living in the most deprived parts of Oxford City and Cherwell District Council areas are 70% more likely to attend an ED with an unintentional injury than those living in the least deprived parts.
- The finding of much higher unintentional injury rates in areas with high levels of deprivation holds true for unintentional injuries in the home and from falls and non-sport leisure activities.
- There are higher sport-related injury rates in areas with lower levels of deprivation, excepting football injuries which are higher among the most deprived.
- The injury data set at the two Oxfordshire hospitals performed well and yielded useful results.

Acknowledgements The authors thank Errol Taylor, Deputy Chief Executive RoSPA for perseverance in ensuring the success of the ED pilot data collection. They also thank Barts Charity for funding staff under the Centre for Trauma Sciences project and to Health and Social Care Information Centre staff for detail on how to group and analyse SNOMED codes. The authors also thank OUH staff for the preparation of the data extracts. Finally, none of this analysis would have been possible without the willingness of patients to give their information and without the dedicated recording of injury data by clerical staff at the two hospitals.

Contributors TCH was responsible for the design of the data set, its implementation in the hospitals and ensuring efficient collection of data. GK analysed and reported on the data. GK and AMP designed the study and all three authors drafted and edited the manuscript. TCH takes responsibility for the integrity of the data and GK had access to the study data and takes responsibility for the accuracy of the data analysis.

Competing interests GK was employed under a grant awarded to the Centre for Trauma Sciences project by the Barts Charity; TCH is chair of the Informatics Committee of the Royal College of Emergency Medicine, which develops case mix measures and high-quality data collection and information technology systems for the specialty of emergency medicine, and had a scholarship from the Royal Society for the Prevention of Accidents to conduct another related study of emergency department data in 2011.

Ethics approval Information Governance for the data extract was approved by the Caldicott Guardian at Oxford University Hospitals National Health Service (NHS) Foundation Trust.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

